UVData

UVData objects hold all of the metadata and data required to analyze interferometric data sets. Interferometric data is fundamentally tied to baselines, which are composed of pairs of antennas. Visibilities, the measured quantity recorded from interferometers, are complex numbers per baseline, time, frequency and instrumental polarization. On UVData objects, visibilities are held in the data_array. The data_array has axes corresponding to baseline-time, frequency and instrumental polarization, so the baselines and times are indexed together. This is because it is not uncommon for interferometers not to record every baseline at every time for several reasons (including baseline-dependent averaging).

The antennas are described in two ways: with antenna numbers and antenna names. The antenna numbers should not be confused with indices – they are not required to start at zero or to be contiguous, although it is not uncommon for some telescopes to number them like indices. On UVData objects, the names and numbers are held in the antenna_names and antenna_numbers attributes respectively. These are arranged in the same order so that an antenna number can be used to identify an antenna name and vice versa. Note that not all the antennas listed in antenna_numbers and antenna_names are guaranteed to have visibilities associated with them in the data_array. The antenna numbers associated with each visibility is held in the ant_1_array and ant_2_array attributes. These arrays hold the antenna numbers for each visibility (they have the same length as the data_array along the baseline-time axis) and which array they appear in (ant_1_array vs ant_2_array) indicates the direction of the baseline. On UVData objects, the baseline vector is defined to point from antenna 1 to antenna 2, so it is given by the position of antenna 2 minus the position of antenna 1. Since the ant_1_array and ant_2_array attributes have the length of the baseline-time axis, when there is more than one time integration in the data there are many repetitions of each baseline. The times for each visibility are given by the time_array attribute which also has the same length (the length of the baseline-time axis on the data_array).

There is also a baseline_array attribute with baseline numbers defined from the ant_1_array and ant_2_array as \(baseline = 2048 \times (antenna_1+1) + (antenna_2+1) + 2^{16}\). This gives a unique baseline number for each antenna pair and can be a useful way to identify visibilities associated with particular baselines. The baseline_array attribute has the same length as the ant_1_array and ant_2_array (the length of the baseline-time axis on the data_array).

For most users, the convenience methods for quick data access (see UVData: Quick data access) are the easiest way to get data for particular sets of baselines. Those methods take the antenna numbers (i.e. numbers listed in antenna_numbers) as inputs.

UVData: parameter shape changes

Initially, UVData objects were designed to support spectral windows as a separate axis, although support for more than one spectral window was never implemented (so the spectral window axis was always constrained to be length 1). This structure would have required that all spectral windows had the same number of channels. In version 2.1.2 we introduced flexible spectral windows, which implemented spectral windows as sets of frequency channels with some extra parameters to track which channels were in each spectral window. This structure allows for spectral windows to have arbitrary numbers of frequency channels. This structure made the channel_width parameter be an array of length Nfreqs rather than a scalar, but only when the UVData object contained flexible spectral windows. Supporting multiple spectral windows in this way removes the need for the spectral window axis on several UVData parameters, but the axis was left as a length 1 axis for backwards compatibility.

In version 3.0, we will remove the length 1 axis that was originally intended for the spectral windows axis from the data_array, flag_array, nsample_array and freq_array parameters and the channel_width parameter will always be an array of length Nfreqs.

In order to support an orderly conversion of code and packages that use the UVData object to these new parameter shapes, we have created the pyuvdata.UVData.use_future_array_shapes() method which will change the parameters listed above to have their future shapes. Users writing new code that uses UVData objects are encouraged to call that method immediately after creating a UVData object or reading in data from a file to ensure that the code will be compatible with the forthcoming changes. Developers and maintainers of existing code that uses UVData objects are encouraged to similarly add that method call and convert their code to use the new shapes at their earliest convenience to ensure future compatibility. The method will be deprecated but not removed in version 3.0 (it will just become a no-op) so that code that calls it will continue to function.

UVData: File conversion

Converting between tested data formats. Note that it is possible to create a new pyuvdata.UVData object with the class method pyuvdata.UVData.from_file() as well.

a) miriad -> uvfits

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()

>>> # This miriad file is known to be a drift scan.
>>> # Use the `read` method, optionally specify the file type. Can also use the
>>> # file type specific `read_miriad` method, but only if reading a single file.
>>> miriad_file = os.path.join(DATA_PATH, 'new.uvA')
>>> uvd.read(miriad_file)
>>> uvd.read(miriad_file, file_type='miriad')
>>> uvd.read_miriad(miriad_file)

>>> # Write out the uvfits file
>>> write_file = os.path.join('.', 'tutorial.uvfits')
>>> uvd.write_uvfits(write_file, force_phase=True, spoof_nonessential=True)
The data are in drift mode and do not have a defined phase center. Phasing to zenith of the first timestamp.

b) uvfits -> miriad

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> import shutil
>>> uvd = UVData()
>>> uvfits_file = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')

>>> # Use the `read` method (and by extension `from_file`), optionally specify the file type. Can also use the
>>> # file type specific `read_uvfits` method, but only if reading a single file.
>>> uvd.read(uvfits_file)
>>> uvd.read(uvfits_file, file_type='uvfits')
>>> uvd.read_uvfits(uvfits_file)
>>> # Here we use the ``from_file`` class method without needing to initialize a new object.
>>> uvd = UVData.from_file(uvfits_file)

>>> # Write out the miriad file
>>> write_file = os.path.join('.', 'tutorial.uv')
>>> if os.path.exists(write_file):
...    shutil.rmtree(write_file)
>>> uvd.write_miriad(write_file)

c) FHD -> uvfits

When reading FHD format, we need to point to several files for each observation.

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()

>>> # Construct the list of files
>>> fhd_prefix = os.path.join(DATA_PATH, 'fhd_vis_data/1061316296_')
>>> fhd_files = [fhd_prefix + f for f in ['flags.sav', 'vis_XX.sav', 'params.sav',
...                                       'vis_YY.sav', 'vis_model_XX.sav',
...                                       'vis_model_YY.sav', 'settings.txt',
...                                       'layout.sav']]

# Use the `read` method, optionally specify the file type. Can also use the
# file type specific `read_fhd` method, but only if reading a single observation.
>>> uvd.read(fhd_files)
>>> uvd.read(fhd_files, file_type='fhd')
>>> uvd.read_fhd(fhd_files)
>>> write_file = os.path.join('.', 'tutorial.uvfits')
>>> uvd.write_uvfits(write_file, spoof_nonessential=True)

d) FHD -> miriad

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> import shutil
>>> import os
>>> uvd = UVData()

>>> # Construct the list of files
>>> fhd_prefix = os.path.join(DATA_PATH, 'fhd_vis_data/1061316296_')
>>> fhd_files = [fhd_prefix + f for f in ['flags.sav', 'vis_XX.sav', 'params.sav',
...                                       'vis_YY.sav', 'vis_model_XX.sav',
...                                       'vis_model_YY.sav', 'settings.txt',
...                                       'layout.sav']]
>>> uvd.read(fhd_files)
>>> write_file = os.path.join('.','tutorial.uv')
>>> if os.path.exists(write_file):
...    shutil.rmtree(write_file)
>>> uvd.write_miriad(write_file)

e) CASA -> uvfits

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> ms_file = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.ms')

>>> # Use the `read` method, optionally specify the file type. Can also use the
>>> # file type specific `read_ms` method, but only if reading a single file.
>>> # note that reading CASA measurement sets requires casacore to be installed
>>> uvd.read(ms_file)
>>> uvd.read(ms_file, file_type='ms')
>>> uvd.read_ms(ms_file)

>>> # Write out uvfits file
>>> write_file = os.path.join('.', 'tutorial.uvfits')
>>> uvd.write_uvfits(write_file, spoof_nonessential=True)

f) CASA -> miriad

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> import shutil
>>> import os
>>> uvd = UVData()
>>> ms_file = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.ms')

>>> # note that reading CASA measurement sets requires casacore to be installed
>>> uvd.read(ms_file)

>>> # Write out Miriad file
>>> write_file = os.path.join('.', 'tutorial.uv')
>>> if os.path.exists(write_file):
...    shutil.rmtree(write_file)
>>> uvd.write_miriad(write_file)

g) miriad -> uvh5

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()

>>> # This miriad file is known to be a drift scan.
>>> miriad_file = os.path.join(DATA_PATH, 'new.uvA')
>>> uvd.read(miriad_file)

>>> # Write out the uvh5 file
>>> uvd.write_uvh5(os.path.join('.', 'tutorial.uvh5'))

h) uvfits -> uvh5

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> import os
>>> uvd = UVData()
>>> uvfits_file = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(uvfits_file)

>>> # Write out the uvh5 file
>>> write_file = os.path.join('.', 'tutorial.uvh5')
>>> if os.path.exists(write_file):
...    os.remove(write_file)
>>> uvd.write_uvh5(write_file)

>>> # Read the uvh5 file back in.
>>> # Use the `read` method, optionally specify the file type. Can also use the
>>> # file type specific `read_uvh5` method, but only if reading a single file.
>>> uvd.read(write_file)
>>> uvd.read(write_file, file_type='uvh5')
>>> uvd.read_uvh5(write_file)

i) MWA correlator -> uvfits

The MWA correlator writes FITS files containing the correlator dumps (but lacking metadata and not conforming to the uvfits format). pyuvdata can read these files from both the Legacy and MWAX correlator versions, along with MWA metafits files (containing the required metadata), into a UVData object which can then be written out to uvfits or any other supported file type. There are also options for applying cable length corrections, dividing out digital gains, dividing out the coarse band shape, common flagging patterns, using AOFlagger flag files, and phasing the data to the pointing center. It is also optional to apply a Van Vleck correction for Legacy correlator data. The default for this correction is to use a Chebyshev polynomial approximation, and there is an option to instead use a slower integral implementation.

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()

>>> # Construct the list of files
>>> data_path = os.path.join(DATA_PATH, 'mwa_corr_fits_testfiles/')
>>> filelist = [data_path + i for i in ['1131733552.metafits',
... '1131733552_20151116182537_mini_gpubox01_00.fits']]

>>> # Use the `read` method, optionally specify the file type. Can also use the
>>> # file type specific `read_mwa_corr_fits` method, but only if reading files
>>> # from a single observation.
>>> # Apply cable corrections and phase data before writing to uvfits
>>> # Skip routine time/frequency flagging - see flag_init and associated keywords in documentation
>>> uvd.read(filelist, correct_cable_len=True, phase_to_pointing_center=True, flag_init=False)
>>> uvd.read(filelist, file_type='mwa_corr_fits', correct_cable_len=True, phase_to_pointing_center=True, flag_init=False)
>>> uvd.read_mwa_corr_fits(filelist, correct_cable_len=True, phase_to_pointing_center=True, flag_init=False)

>>> # Write out uvfits file
>>> write_file = os.path.join('.', 'tutorial.uvfits')
>>> uvd.write_uvfits(write_file, spoof_nonessential=True)

UVData: Quick data access

A small suite of functions are available to quickly access the underlying numpy arrays of data, flags, and nsamples. Although the user can perform this indexing by hand, several convenience functions exist to easily extract specific subsets corresponding to antenna-pair and/or polarization combinations. There are three specific methods that will return numpy arrays: pyuvdata.UVData.get_data(), pyuvdata.UVData.get_flags(), and pyuvdata.UVData.get_nsamples(). When possible, these methods will return numpy MemoryView objects, which is relatively fast and adds minimal memory overhead. There are also corresponding methods pyuvdata.UVData.set_data(), pyuvdata.UVData.set_flags(), and pyuvdata.UVData.set_nsamples() which will overwrite sections of these datasets with user-provided data.

a) Data for single antenna pair / polarization combination.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)
>>> data = uvd.get_data(1, 2, 'rr')  # data for ant1=1, ant2=2, pol='rr'
>>> times = uvd.get_times(1, 2)  # times corresponding to 0th axis in data
>>> print(data.shape)
(9, 64)
>>> print(times.shape)
(9,)

>>> # One can equivalently make any of these calls with the input wrapped in a tuple.
>>> data = uvd.get_data((1, 2, 'rr'))
>>> times = uvd.get_times((1, 2))

b) Flags and nsamples for above data.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> flags = uvd.get_flags(1, 2, 'rr')
>>> nsamples = uvd.get_nsamples(1, 2, 'rr')
>>> print(flags.shape)
(9, 64)
>>> print(nsamples.shape)
(9, 64)

c) Data for single antenna pair, all polarizations.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> data = uvd.get_data(1, 2)
>>> print(data.shape)
(9, 64, 4)

>>> # Can also give baseline number
>>> data2 = uvd.get_data(uvd.antnums_to_baseline(1, 2))
>>> print(np.all(data == data2))
True

d) Data for single polarization, all baselines.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> data = uvd.get_data('rr')
>>> print(data.shape)
(1360, 64)

e) Update data arrays in place for UVData

There are methods on UVData objects which allow for updating the data, flags, or nsamples arrays in place. We show how to use the pyuvdata.UVData.set_data() method below, and note there are analogous pyuvdata.UVData.set_flags() and pyuvdata.UVData.set_nsamples() methods. .. code-block:: python

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, "day2_TDEM0003_10s_norx_1src_1spw.uvfits")
>>> uvd.read(filename)
>>> data = uvd.get_data(1, 2, "rr", force_copy=True, squeeze="none")
>>> data *= 2
>>> uvd.set_data(data, 1, 2, "rr")

f) Iterate over all antenna pair / polarizations.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> for key, data in uvd.antpairpol_iter():
...  flags = uvd.get_flags(key)
...  nsamples = uvd.get_nsamples(key)

  >>> # Do something with the data, flags, nsamples

g) Convenience functions to ask what antennas, baselines, and pols are in the data.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # Get all unique antennas in data
>>> print(uvd.get_ants())
[ 0  1  2  3  6  7  8 11 14 18 19 20 21 22 23 24 26 27]

>>> # Get all baseline nums in data, print first 10.
>>> print(uvd.get_baseline_nums()[0:10])
[67586 67587 67588 67591 67592 67593 67596 67599 67603 67604]

>>> # Get all (ordered) antenna pairs in data (same info as baseline_nums), print first 10.
>>> print(uvd.get_antpairs()[0:10])
[(0, 1), (0, 2), (0, 3), (0, 6), (0, 7), (0, 8), (0, 11), (0, 14), (0, 18), (0, 19)]

>>> # Get all antenna pairs and polarizations, i.e. keys produced in UVData.antpairpol_iter(), print first 5.
>>> print(uvd.get_antpairpols()[0:5])
[(0, 1, 'rr'), (0, 1, 'll'), (0, 1, 'rl'), (0, 1, 'lr'), (0, 2, 'rr')]

h) Quick access to file attributes of a UV* object (UVData, UVCal, UVBeam)

## in bash ##
>>> # Print data_array.shape to stdout
pyuvdata_inspect.py --attr=data_array.shape <uv*_file>

>>> # Print Ntimes,Nfreqs,Nbls to stdout
pyuvdata_inspect.py --attr=Ntimes,Nfreqs,Nbls <uv*_file>

>>> # Load object to instance name "uv" and will remain in interpreter
pyuvdata_inspect.py -i <uv*_file>

UVData: Phasing

Phasing/unphasing data

a) Data with a single phase center.

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> from astropy.time import Time
>>> uvd = UVData()
>>> miriad_file = os.path.join(DATA_PATH, 'new.uvA')
>>> uvd.read(miriad_file)
>>> print(uvd.phase_type)
drift

>>> # Phase the data to the zenith at first time step. Can either be specified
>>> # as a astropy Time object or as a float which is taken to be in JD.
>>> uvd.phase_to_time(Time(uvd.time_array[0], format='jd'))
>>> print(uvd.phase_type)
phased

>>> # Undo phasing
>>> uvd.unphase_to_drift()
>>> print(uvd.phase_type)
drift

>>> # Phase the data to the zenith at first time step using float JD.
>>> uvd.phase_to_time(uvd.time_array[0])
>>> print(uvd.phase_type)
phased

>>> # Rephase to another phase center (unphases and rephases under the hood)
>>> # Phase to a specific ra/dec/epoch (in radians)
>>> uvd.phase(5.23368, 0.710940, epoch="J2000")

b) Data with a multiple phase centers enabled.

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> from numpy import pi
>>> uvd = UVData()
>>> uvh5_file = os.path.join(DATA_PATH, "zen.2458661.23480.HH.uvh5")
>>> # By setting `make_multi_phase=True`, we force the object returned to be
>>> # multi-phase-ctr capable, which comes with a few advanced features
>>> uvd.read(uvh5_file, make_multi_phase=True)

>>> # For a multi phase center dataset, we can get information on the sources in the
>>> # data set by using the `print_phase_center_info` command.
>>> uvd.print_phase_center_info()
   ID     Cat Entry       Type      Az/Lon/RA    El/Lat/Dec  Frame
    #          Name                       deg           deg
-------------------------------------------------------------------
    0        zenith   unphased     0:00:00.00  +90:00:00.00  altaz


>>> # With multi-phase-ctr data sets, one needs to supply a unique name for each
>>> # phase center. We are specifing that the type here is "sidereal", which just
>>> # means that the position is represented by a fixed set of coordinates in a
>>> # sidereal coordinate frame (e.g., ICRS, FK5, etc)
>>> uvd.phase(5.23368, 0.710940, epoch="J2000", cat_name='target1', cat_type="sidereal")
>>> uvd.print_phase_center_info()
   ID     Cat Entry       Type     Az/Lon/RA    El/Lat/Dec  Frame    Epoch
    #          Name                    hours           deg
---------------------------------------------------------------------------
    1       target1   sidereal   19:59:28.27  +40:44:01.90   icrs  J2000.0


>>> # And with multi-phase-ctr data sets, you can also use "ephem" objects, which
>>> # move with time, e.g. solar system bodies. The phase method has a `lookup_name`
>>> # option which, if set to true, will allow you to search JPL-Horizons for coords
>>> uvd.phase(0, 0, epoch="J2000", cat_name="Sun", lookup_name=True)
>>> uvd.print_phase_center_info()
   ID     Cat Entry       Type     Az/Lon/RA    El/Lat/Dec  Frame    Epoch        Ephem Range        Dist   V_rad
    #          Name                    hours           deg                  Start-MJD    End-MJD       pc    km/s
------------------------------------------------------------------------------------------------------------------
    0           Sun      ephem    6:19:28.68  +23:21:44.63   icrs  J2000.0   58660.25   58661.00  1.0e+00  0.2157


>>> # Finally, we can use a selection mask to only phase part of the data at a time,
>>> # like only the data belonging to the first integration
>>> select_mask = uvd.time_array == uvd.time_array[0]

>>> # Let's use this to create a 'driftscan' target, which is phased to a particular
>>> # azimuth and elevation (note this is different than `phase_type="drift"`, which
>>> # does NOT produced phased data). Note that we need to supply `phase_frame` as
>>> # "altaz", since driftscans are always in that frame.
>>> uvd.phase(0, pi/2, cat_name="zenith", phase_frame='altaz', cat_type="driftscan", select_mask=select_mask)

>>> # Now when using `print_phase_center_info`, we'll see that there are multiple
>>> # phase centers present in the data
>>> uvd.print_phase_center_info()
   ID     Cat Entry       Type      Az/Lon/RA    El/Lat/Dec  Frame    Epoch        Ephem Range        Dist   V_rad
    #          Name                       deg           deg                  Start-MJD    End-MJD       pc    km/s
-------------------------------------------------------------------------------------------------------------------
    0           Sun      ephem    94:52:10.21  +23:21:44.63   icrs  J2000.0   58660.25   58661.00  1.0e+00  0.2157
    1        zenith  driftscan     0:00:00.00  +90:00:00.00  altaz  J2000.0

UVData: Averaging and Resampling

pyuvdata has methods to average (downsample) in time and frequency and also to upsample in time (useful to get all baselines on the shortest time integration for a data set that has had baseline dependent time averaging applied).

Use the pyuvdata.UVData.downsample_in_time(), pyuvdata.UVData.upsample_in_time() and pyuvdata.UVData.resample_in_time() methods to average (downsample) and upsample in time or to do both at once on data that have had baseline dependent averaging (BDA) applied to put all the baselines on the same time integrations. Resampling in time is done on phased data by default, drift mode data are phased, resampled, and then unphased. Set allow_drift=True to do resampling without phasing.

Use the pyuvdata.UVData.frequency_average() method to average along the frequency axis.

a) Averaging (Downsampling) in time

Use either the n_times_to_avg keyword to specify an integer factor to average by or min_int_time to specify a minimum final integration time. Specifying min_int_time is most appropriate when the integration time varies, e.g. if the data have had baseline-dependent averaging applied.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> datafile = os.path.join(DATA_PATH, "zen.2458661.23480.HH.uvh5")
>>> uvd.read(datafile)
>>> uvd2 = uvd.copy()
>>> print("Range of integration times: ", np.amin(uvd.integration_time),
...       "-", np.amax(uvd.integration_time))
Range of integration times:  1.879048192 - 1.879048192

>>> # first use n_times_to_avg to average by a factor of 2 in time.
>>> uvd.downsample_in_time(n_times_to_avg=2)
Data are in drift mode, phasing before resampling.
Unphasing back to drift mode.

>>> print("Range of integration times after downsampling: ", np.amin(uvd.integration_time),
...       "-", np.amax(uvd.integration_time))
Range of integration times after downsampling:  3.758096384 - 3.758096384

>>> # Now use min_int_time to average by a factor of 2 in time.
>>> min_integration_time = np.amax(uvd2.integration_time) * 2.0
>>> uvd2.downsample_in_time(min_int_time=min_integration_time)
Data are in drift mode, phasing before resampling.
Unphasing back to drift mode.

>>> print("Range of integration times after downsampling: ", np.amin(uvd2.integration_time),
...       "-", np.amax(uvd2.integration_time))
Range of integration times after downsampling:  3.758096384 - 3.758096384

b) Upsampling in time

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> datafile = os.path.join(DATA_PATH, "zen.2458661.23480.HH.uvh5")
>>> uvd.read(datafile)
>>> print("Range of integration times: ", np.amin(uvd.integration_time),
...       "-", np.amax(uvd.integration_time))
Range of integration times:  1.879048192 - 1.879048192

>>> max_integration_time = np.amin(uvd.integration_time) / 2.0
>>> uvd.upsample_in_time(max_integration_time)
Data are in drift mode, phasing before resampling.
Unphasing back to drift mode.

>>> print("Range of integration times after upsampling: ", np.amin(uvd.integration_time),
...       "-", np.amax(uvd.integration_time))
Range of integration times after upsampling:  0.939524096 - 0.939524096

c) Resampling a BDA dataset in time

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> testfile = os.path.join(DATA_PATH, "simulated_bda_file.uvh5")
>>> uvd.read(testfile)
>>> print("Range of integration times: ", np.amin(uvd.integration_time),
...       "-", np.amax(uvd.integration_time))
Range of integration times:  2.0 - 16.0

>>> # Resample all baselines to an 8s integration time
>>> uvd.resample_in_time(8, allow_drift=True)
Data are in drift mode and allow_drift is True, so resampling will be done without phasing.
Data are in drift mode and allow_drift is True, so resampling will be done without phasing.

>>> print("Range of integration times after resampling: ", np.amin(uvd.integration_time),
...       "-", np.amax(uvd.integration_time))
Range of integration times after resampling:  8.0 - 8.0

d) Averaging in frequency

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> datafile = os.path.join(DATA_PATH, "zen.2458661.23480.HH.uvh5")
>>> uvd.read(datafile)
>>> print("Channel width: ", uvd.channel_width)
Channel width:  122070.3125

>>> # Average by a factor of 2 in frequency
>>> uvd.frequency_average(2)
>>> print("Channel width after frequency averaging: ", uvd.channel_width)
Channel width after frequency averaging:  244140.625

UVData: Plotting

Making a simple waterfall plot.

Note: there is now support for reading in only part of a uvfits, uvh5 or miriad file (see UVData: Working with large files), so you need not read in the entire file to plot one waterfall.

>>> import os
>>> import numpy as np
>>> import matplotlib.pyplot as plt 
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # Note that the length of the array along axis=1 is always 1.
>>> print(uvd.data_array.shape)
(1360, 1, 64, 4)
>>> print(uvd.Ntimes)
15
>>> print(uvd.Nfreqs)
64
>>> bl = uvd.antnums_to_baseline(1, 2)
>>> print(bl)
69635
>>> bl_ind = np.where(uvd.baseline_array == bl)[0]

>>> # Amplitude waterfall for all spectral channels and 0th polarization
>>> plt.imshow(np.abs(uvd.data_array[bl_ind, 0, :, 0])) 
>>> plt.show() 

>>> # If using flexible spectral windows (flex_spw=True), plot the 0th window, 0th pol
>>> if uvd.flex_spw: 
...     window_sel = uvd.flex_spw_id_array == 0 
...     plt.imshow(np.abs(uvd.data_array[bl_ind, 0, window_sel, 0])) 
...     plt.show() 

>>> # Update: With new UI features, making waterfalls is easier than ever!
>>> plt.imshow(np.abs(uvd.get_data((1, 2, uvd.polarization_array[0])))) 
>>> plt.show() 

UVData: Location conversions

A number of conversion methods exist to map between different coordinate systems for locations on the earth.

a) Getting antenna positions in topocentric frame in units of meters

>>> # directly from UVData object
>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> data_file = os.path.join(DATA_PATH, 'new.uvA')
>>> uvd.read(data_file)
>>> antpos, ants = uvd.get_ENU_antpos()

>>> # using utils
>>> from pyuvdata import utils

>>> # get antennas positions in ECEF
>>> antpos = uvd.antenna_positions + uvd.telescope_location

>>> # convert to topocentric (East, North, Up or ENU) coords.
>>> antpos = utils.ENU_from_ECEF(antpos, *uvd.telescope_location_lat_lon_alt)

UVData: Selecting data

The pyuvdata.UVData.select() method lets you select specific antennas (by number or name), antenna pairs, frequencies (in Hz or by channel number), times (or time range), local sidereal time (LST) (or LST range), or polarizations to keep in the object while removing others.

Note: The same select interface is now supported on the read for many file types (see UVData: Working with large files), so you need not read in the entire file before doing the select.

a) Select 3 antennas to keep using the antenna number.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # print all the antennas numbers with data in the original file
>>> print(np.unique(uvd.ant_1_array.tolist() + uvd.ant_2_array.tolist()))
[ 0  1  2  3  6  7  8 11 14 18 19 20 21 22 23 24 26 27]
>>> uvd.select(antenna_nums=[0, 11, 20])

>>> # print all the antennas numbers with data after the select
>>> print(np.unique(uvd.ant_1_array.tolist() + uvd.ant_2_array.tolist()))
[ 0 11 20]

b) Select 3 antennas to keep using the antenna names, also select 5 frequencies to keep.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # print all the antenna names with data in the original file
>>> unique_ants = np.unique(uvd.ant_1_array.tolist() + uvd.ant_2_array.tolist())
>>> print([uvd.antenna_names[np.where(uvd.antenna_numbers==a)[0][0]] for a in unique_ants])
['W09', 'E02', 'E09', 'W01', 'N06', 'N01', 'E06', 'E08', 'W06', 'W04', 'N05', 'E01', 'N04', 'E07', 'W05', 'N02', 'E03', 'N08']

>>> # print how many frequencies in the original file
>>> print(uvd.freq_array.size)
64
>>> uvd.select(antenna_names=['N02', 'E09', 'W06'], frequencies=uvd.freq_array[0,0:4])

>>> # print all the antenna names with data after the select
>>> unique_ants = np.unique(uvd.ant_1_array.tolist() + uvd.ant_2_array.tolist())
>>> print([uvd.antenna_names[np.where(uvd.antenna_numbers==a)[0][0]] for a in unique_ants])
['E09', 'W06', 'N02']

>>> # print all the frequencies after the select
>>> print(uvd.freq_array)
[[3.6304542e+10 3.6304667e+10 3.6304792e+10 3.6304917e+10]]

c) Select a few antenna pairs to keep

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # print how many antenna pairs with data in the original file
>>> print(len(set(zip(uvd.ant_1_array, uvd.ant_2_array))))
153
>>> uvd.select(bls=[(0, 2), (6, 0), (0, 21)])

>>> # note that order of the values in the pair does not matter
>>> # print all the antenna pairs after the select
>>> print(sorted(set(zip(uvd.ant_1_array, uvd.ant_2_array))))
[(0, 2), (0, 6), (0, 21)]

d) Select antenna pairs using baseline numbers

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # baseline numbers can be found in the baseline_array
>>> print(len(uvd.baseline_array))
1360

>>> # select baselines using the baseline numbers
>>> uvd.select(bls=[73736, 73753, 81945])

>>> # print unique baselines and antennas after select
>>> print(np.unique(uvd.baseline_array))
[73736 73753 81945]
>>> print(list(set(zip(uvd.ant_1_array, uvd.ant_2_array))))
[(3, 24), (3, 7), (7, 24)]

e) Select polarizations

Selecting on polarizations can be done either using the polarization numbers or the polarization strings (e.g. “xx” or “yy” for linear polarizations or “rr” or “ll” for circular polarizations). If x_orientation is set on the object, strings represting the physical orientation of the dipole can also be used (e.g. “nn” or “ee).

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> import pyuvdata.utils as uvutils
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # polarization numbers can be found in the polarization_array
>>> print(uvd.polarization_array)
[-1 -2 -3 -4]

>>> # polarization numbers can be converted to strings using a utility function
>>> print(uvutils.polnum2str(uvd.polarization_array))
['rr', 'll', 'rl', 'lr']

>>> # select polarizations using the polarization numbers
>>> uvd.select(polarizations=[-1, -2, -3])

>>> # print polarization numbers and strings after select
>>> print(uvd.polarization_array)
[-1 -2 -3]
>>> print(uvutils.polnum2str(uvd.polarization_array))
['rr', 'll', 'rl']

>>> # select polarizations using the polarization strings
>>> uvd.select(polarizations=["rr", "ll"])

>>> # print polarization numbers and strings after select
>>> print(uvd.polarization_array)
[-1 -2]
>>> print(uvutils.polnum2str(uvd.polarization_array))
['rr', 'll']

>>> # read in a file with linear polarizations and an x_orientation
>>> filename = os.path.join(DATA_PATH, 'zen.2458661.23480.HH.uvh5')
>>> uvd.read(filename)

>>> # print polarization numbers and strings
>>> print(uvd.polarization_array)
[-5 -6]
>>> print(uvutils.polnum2str(uvd.polarization_array))
['xx', 'yy']

>>> # print x_orientation
>>> print(uvd.x_orientation)
NORTH

>>> # select polarizations using the physical orientation strings
>>> uvd.select(polarizations=["ee"])

>>> # print polarization numbers and strings after select
>>> print(uvd.polarization_array)
[-6]
>>> print(uvutils.polnum2str(uvd.polarization_array))
['yy']

f) Select antenna pairs and polarizations using ant_str argument

Basic options are “auto”, “cross”, or “all”. “auto” returns just the autocorrelations (all pols), while “cross” returns just the cross-correlations (all pols). The ant_str can also contain:

1. Individual antenna number(s):

  • 1: returns all antenna pairs containing antenna number 1 (including the auto correlation)

  • 1,2: returns all antenna pairs containing antennas 1 and/or 2

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # Print the number of antenna pairs in the original file
>>> print(len(uvd.get_antpairs()))
153

>>> # Apply select to UVData object
>>> uvd.select(ant_str='1,2,3')

>>> # Print the number of antenna pairs after the select
>>> print(len(uvd.get_antpairs()))
48

2. Individual baseline(s):

  • 1_2: returns only the antenna pair (1,2)

  • 1_2,1_3,1_10: returns antenna pairs (1,2),(1,3),(1,10)

  • (1,2)_3: returns antenna pairs (1,3),(2,3)

  • 1_(2,3): returns antenna pairs (1,2),(1,3)

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # Print the number of antenna pairs in the original file
>>> print(len(uvd.get_antpairs()))
153

>>> # Apply select to UVData object
>>> uvd.select(ant_str='(1,2)_(3,6)')

>>> # Print the antennas pairs with data after the select
>>> print(uvd.get_antpairs())
[(1, 3), (1, 6), (2, 3), (2, 6)]

3. Antenna number(s) and polarization(s):

When polarization information is passed with antenna numbers, all antenna pairs kept in the object will retain data for each specified polarization

  • 1x: returns all antenna pairs containing antenna number 1 and polarizations xx and xy

  • 2x_3y: returns the antenna pair (2,3) and polarization xy

  • 1r_2l,1l_3l,1r_4r: returns antenna pairs (1,2), (1,3), (1,4) and polarizations rr, ll, and rl. This yields a complete list of baselines with polarizations of 1r_2l, 1l_2l, 1r_2r, 1r_3l, 1l_3l, 1r_3r, 1r_11l, 1l_11l, and 1r_11r.

  • (1x,2y)_(3x,4y): returns antenna pairs (1,3),(1,4),(2,3),(2,4) and polarizations xx, yy, xy, and yx

  • 2l_3: returns antenna pair (2,3) and polarizations ll and lr

  • 2r_3: returns antenna pair (2,3) and polarizations rr and rl

  • 1l_3,2x_3: returns antenna pairs (1,3), (2,3) and polarizations ll, lr, xx, and xy

  • 1_3l,2_3x: returns antenna pairs (1,3), (2,3) and polarizations ll, rl, xx, and yx

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # Print the number of antennas and polarizations with data in the original file
>>> print((len(uvd.get_antpairs()), uvd.get_pols()))
(153, ['rr', 'll', 'rl', 'lr'])

>>> # Apply select to UVData object
>>> uvd.select(ant_str='1r_2l,1l_3l,1r_6r')

>>> # Print all the antennas numbers and polarizations with data after the select
>>> print((uvd.get_antpairs(), uvd.get_pols()))
([(1, 2), (1, 3), (1, 6)], ['rr', 'll', 'rl'])

4. Stokes parameter(s):

Can be passed lowercase or uppercase

  • i,I: keeps only Stokes I

  • q,V: keeps both Stokes Q and V

5. Minus sign(s):

If a minus sign is present in front of an antenna number, it will not be kept in the data

  • 1,-3: returns all antenna pairs containing antenna 1, but removes any containing antenna 3

  • 1,-1_3: returns all antenna pairs containing antenna 1, except the antenna pair (1,3)

  • 1x_(-3y,10x): returns antenna pair (1,10) and polarization xx

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # Print the number of antenna pairs in the original file
>>> print(len(uvd.get_antpairs()))
153

>>> # Apply select to UVData object
>>> uvd.select(ant_str='1,-1_3')

>>> # Print the number of antenna pairs with data after the select
>>> print(len(uvd.get_antpairs()))
16

g) Select based on time or local sidereal time (LST)

You can select times to keep on an object by specifying exact times to keep or time ranges to keep or the desired LSTs or LST range. Note that the LST is expected to be in radians (not hours), consistent with how the LSTs are stored on the object. When specifying an LST range, if the first number is larger than the second, the range is assumed to wrap around LST = 0 = 2*pi.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)

>>> # Times can be found in the time_array, which is length Nblts.
>>> # Use unique to find the unique times
>>> print(np.unique(uvd.time_array))
[2455312.64023149 2455312.64023727 2455312.64024305 2455312.64024884
 2455312.64034724 2455312.64046293 2455312.64057797 2455312.64057869
 2455312.64069444 2455312.64069492 2455312.64081019 2455312.64092547
 2455312.64092594 2455312.6410417  2455312.64115739]

>>> # make a copy and select some times that are on the object
>>> uvd2 = uvd.copy()
>>> uvd2.select(times=np.unique(uvd.time_array)[0:5])

>>> # print the unique times after the select
>>> print(np.unique(uvd2.time_array))
[2455312.64023149 2455312.64023727 2455312.64024305 2455312.64024884
 2455312.64034724]

>>> # make a copy and select a time range
>>> uvd2 = uvd.copy()
>>> uvd2.select(time_range=[2455312.64023, 2455312.6406])

>>> # print the unique times after the select
>>> print(np.unique(uvd2.time_array))
[2455312.64023149 2455312.64023727 2455312.64024305 2455312.64024884
 2455312.64034724 2455312.64046293 2455312.64057797 2455312.64057869]

>>> # LSTs can be found in the lst_array
>>> lsts = np.unique(uvd.lst_array)
>>> print(len(lsts))
15

>>> # select LSTs that are on the object
>>> uvd.select(lsts=lsts[0:len(lsts) // 2])

>>> # print length of unique LSTs after select
>>> print(len(np.unique(uvd.lst_array)))
7

h) Select data and return new object (leaving original intact).

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)
>>> uvd2 = uvd.select(antenna_nums=[0, 11, 20], inplace=False)

>>> # print all the antennas numbers with data in the original file
>>> print(np.unique(uvd.ant_1_array.tolist() + uvd.ant_2_array.tolist()))
[ 0  1  2  3  6  7  8 11 14 18 19 20 21 22 23 24 26 27]

>>> # print all the antennas numbers with data after the select
>>> print(np.unique(uvd2.ant_1_array.tolist() + uvd2.ant_2_array.tolist()))
[ 0 11 20]

UVData: Combining and concatenating data

The pyuvdata.UVData.__add__() method lets you combine UVData objects along the baseline-time, frequency, and/or polarization axis.

a) Combine frequencies.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd1 = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd1.read(filename)
>>> uvd2 = uvd1.copy()

>>> # Downselect frequencies to recombine
>>> uvd1.select(freq_chans=np.arange(0, 32))
>>> uvd2.select(freq_chans=np.arange(32, 64))
>>> uvd3 = uvd1 + uvd2
>>> print((uvd1.Nfreqs, uvd2.Nfreqs, uvd3.Nfreqs))
(32, 32, 64)

b) Combine times.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd1 = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd1.read(filename)
>>> uvd2 = uvd1.copy()

>>> # Downselect times to recombine
>>> times = np.unique(uvd1.time_array)
>>> uvd1.select(times=times[0:len(times) // 2])
>>> uvd2.select(times=times[len(times) // 2:])
>>> uvd3 = uvd1 + uvd2
>>> print((uvd1.Ntimes, uvd2.Ntimes, uvd3.Ntimes))
(7, 8, 15)
>>> print((uvd1.Nblts, uvd2.Nblts, uvd3.Nblts))
(459, 901, 1360)

c) Combine in place.

The following two commands are equivalent, and act on uvd1 directly without creating a third uvdata object.

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd1 = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd1.read(filename)
>>> uvd2 = uvd1.copy()
>>> uvd1.select(times=times[0:len(times) // 2])
>>> uvd2.select(times=times[len(times) // 2:])
>>> uvd1.__add__(uvd2, inplace=True)

>>> uvd1.read(filename)
>>> uvd2 = uvd1.copy()
>>> uvd1.select(times=times[0:len(times) // 2])
>>> uvd2.select(times=times[len(times) // 2:])
>>> uvd1 += uvd2

d) Reading multiple files.

If the pyuvdata.UVData.read() method is given a list of files (or list of lists for FHD or MWA correlator files), each file will be read in succession and combined with the previous file(s).

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)
>>> uvd1 = uvd.select(freq_chans=np.arange(0, 20), inplace=False)
>>> uvd2 = uvd.select(freq_chans=np.arange(20, 40), inplace=False)
>>> uvd3 = uvd.select(freq_chans=np.arange(40, 64), inplace=False)
>>> uvd1.write_uvfits(os.path.join('.', 'tutorial1.uvfits'))
>>> uvd2.write_uvfits(os.path.join('.', 'tutorial2.uvfits'))
>>> uvd3.write_uvfits(os.path.join('.', 'tutorial3.uvfits'))
>>> filenames = [os.path.join('.', f) for f
...             in ['tutorial1.uvfits', 'tutorial2.uvfits', 'tutorial3.uvfits']]
>>> uvd.read(filenames)

e) Fast concatenation

As an alternative to the pyuvdata.UVData.__add__() method, the pyuvdata.UVData.fast_concat() method can be used. The user specifies a UVData object to combine with the existing one, along with the axis along which they should be combined. Fast concatenation can be invoked implicitly when reading in multiple files as above by passing the axis keyword argument. This will use the fast_concat method instead of the __add__ method to combine the data contained in the files into a single UVData object.

WARNING: There is no guarantee that two objects combined in this fashion will result in a self-consistent object after concatenation. Basic checking is done, but time-consuming robust check are eschewed for the sake of speed. The data will also not be reordered or sorted as part of the concatenation, and so this must be done manually by the user if a reordering is desired (see UVData: Sorting data along various axes).

The pyuvdata.UVData.fast_concat() method is significantly faster than pyuvdata.UVData.__add__(), especially for large UVData objects. Preliminary benchmarking shows that reading in time-ordered visibilities from disk using the axis keyword argument can improve throughput by nearly an order of magnitude for 100 HERA data files stored in the uvh5 format.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename)
>>> uvd1 = uvd.select(freq_chans=np.arange(0, 20), inplace=False)
>>> uvd2 = uvd.select(freq_chans=np.arange(20, 40), inplace=False)
>>> uvd3 = uvd.select(freq_chans=np.arange(40, 64), inplace=False)
>>> uvd1.write_uvfits(os.path.join('.', 'tutorial1.uvfits'))
>>> uvd2.write_uvfits(os.path.join('.', 'tutorial2.uvfits'))
>>> uvd3.write_uvfits(os.path.join('.', 'tutorial3.uvfits'))
>>> filenames = [os.path.join('.', f) for f
...             in ['tutorial1.uvfits', 'tutorial2.uvfits', 'tutorial3.uvfits']]
>>> uvd.read(filenames, axis='freq')

UVData: Summing and differencing visibilities

Simple summing and differencing of visibilities can be done with the pyuvdata.UVData.sum_vis() and pyuvdata.UVData.diff_vis() methods.

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd1 = UVData()
>>> uvd1.read(filename)
>>> uvd2 = uvd1.copy()

>>> # sum visibilities
>>> uvd1 = uvd1.sum_vis(uvd2)

>>> # diff visibilities
>>> uvd1 = uvd1.diff_vis(uvd2)

>>> # in place option
>>> uvd1.sum_vis(uvd2, inplace=True)

>>> # override a particular parameter
>>> uvd1.instrument = "test instrument"
>>> uvd1.sum_vis(uvd2, inplace=True, override_params=["instrument"])

UVData: Working with large files

To save on memory and time, pyuvdata supports reading only parts of uvfits, uvh5, miriad, and MWA correlator fits files.

a) Reading just the metadata of a file

For uvh5, uvfits, FHD and MWA correlator fits files, reading in the only the metadata results in a metadata only UVData object (which has every attribute except the data_array, flag_array and nsample_array filled out). For Miriad files, less of the metadata can be read without reading the data, but many of the attributes are available.

Measurement set (ms) files do not support reading only the metadata (the read_data keyword is ignored for ms files).

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')

>>> # read the metadata but not the data
>>> uvd.read(filename, read_data=False)

>>> print(uvd.metadata_only)
True

>>> print(uvd.time_array.size)
1360

>>> print(uvd.data_array)
None

b) Reading only parts of uvfits, uvh5 or miriad data

The same options that are available for the pyuvdata.UVData.select() method can also be passed to the pyuvdata.UVData.read`() method to do the select on the read, saving memory and time if only a portion of the data are needed.

Note that these keywords can be used for any file type, but for FHD, MWA correlator FITS files, and measurement set (ms) files, the select is done after the read, which does not save memory. Miriad only supports some of the selections on the read, the unsupported ones are done after the read. Any of the select keywords can be used for any file type, but selects for keywords that are not supported by the select on read for a given file type will be done after the read, which does not save memory.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(filename, freq_chans=np.arange(32))
>>> print(uvd.data_array.shape)
(1360, 1, 32, 4)

>>> # Reading in the metadata can help with specifying what data to read in
>>> uvd.read(filename, read_data=False)
>>> unique_times = np.unique(uvd.time_array)
>>> print(unique_times.shape)
(15,)

>>> times_to_keep = unique_times[[0, 2, 4]]
>>> uvd.read(filename, times=times_to_keep)
>>> print(uvd.data_array.shape)
(179, 1, 64, 4)

>>> # Select a few baselines from a miriad file
>>> filename = os.path.join(DATA_PATH, 'zen.2457698.40355.xx.HH.uvcA')
>>> uvd.read(filename, bls=[(9, 10), (9, 20)])
>>> print(uvd.get_antpairs())
[(9, 10), (9, 20)]

>>> # Select certain frequencies from a uvh5 file
>>> filename = os.path.join(DATA_PATH, "zen.2458661.23480.HH.uvh5")
>>> uvd.read(filename, freq_chans=np.arange(2))
>>> print(uvd.data_array.shape)
(200, 1, 2, 2)

c) Writing to a uvh5 file in parts

It is possible to write to a uvh5 file in parts, so not all of the file needs to be in memory at once. This is very useful when combined with partial reading described above, so that operations that in principle require all of the data, such as applying calibration solutions, can be performed even in situations where the available memory is smaller than the size of the file.

Partial writing requires two steps: initializing an empty file on disk with the correct metadata for the final object, and then subsequently writing the data in stages to that same file. In this latter stage, the same syntax for performing a selective read operation is used, so that the user can precisely specify which parts of the data, flags, and nsample arrays should be written to. The user then also provides the data, flags, and nsample arrays of the proper size, and they are written to the appropriate parts of the file on disk.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> filename = os.path.join(DATA_PATH, "zen.2458661.23480.HH.uvh5")
>>> uvd.read(filename, read_data=False)
>>> partfile = os.path.join('.', 'tutorial_partial_io.uvh5')
>>> uvd.initialize_uvh5_file(partfile, clobber=True)

>>> # read in the lower and upper halves of the band separately, and apply different scalings
>>> Nfreqs = uvd.Nfreqs
>>> Hfreqs = Nfreqs // 2
>>> freq_inds1 = np.arange(Hfreqs)
>>> freq_inds2 = np.arange(Hfreqs, Nfreqs)
>>> uvd2 = UVData()
>>> uvd2.read(filename, freq_chans=freq_inds1)
>>> data_array = 0.5 * uvd2.data_array
>>> flag_array = uvd2.flag_array
>>> nsample_array = uvd2.nsample_array
>>> uvd.write_uvh5_part(partfile, data_array, flag_array, nsample_array, freq_chans=freq_inds1)

>>> uvd2.read(filename, freq_chans=freq_inds2)
>>> data_array = 2.0 * uvd2.data_array
>>> flag_array = uvd2.flag_array
>>> nsample_array = uvd2.nsample_array
>>> uvd.write_uvh5_part(partfile, data_array, flag_array, nsample_array, freq_chans=freq_inds2)

UVData: Sorting data along various axes

Methods exist for sorting (and conjugating) data along all the data axes to support comparisons between UVData objects and software access patterns.

a) Conjugating baselines

The pyuvdata.UVData.conjugate_bls() method will conjugate baselines to conform to various conventions ('ant1<ant2', 'ant2<ant1', 'u<0', 'u>0', 'v<0', 'v>0') or it can just conjugate a set of specific baseline-time indices.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> uvfits_file = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(uvfits_file)
>>> uvd.conjugate_bls('ant1<ant2')
>>> print(np.min(uvd.ant_2_array - uvd.ant_1_array) >= 0)
True

>>> uvd2.conjugate_bls(convention='u<0', use_enu=False)
>>> print(np.max(uvd2.uvw_array[:, 0]) <= 0)
True

b) Sorting along the baseline-time axis

The pyuvdata.UVData.reorder_blts() method will reorder the baseline-time axis by sorting by 'time', 'baseline', 'ant1' or 'ant2' or according to an order preferred for data that have baseline dependent averaging 'bda'. A user can also just specify a desired order by passing an array of baseline-time indices. There is also an option to sort the auto visibilitiess before the cross visibilities (autos_first).

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> uvfits_file = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(uvfits_file)

>>> # The default is to sort first by time, then by baseline
>>> uvd.reorder_blts()
>>> print(np.min(np.diff(uvd.time_array)) >= 0)
True

>>> # Explicity sorting by 'time' then 'baseline' gets the same result
>>> uvd2 = uvd.copy()
>>> uvd2.reorder_blts(order='time', minor_order='baseline')
>>> print(uvd == uvd2)
True

>>> uvd.reorder_blts(order='ant1', minor_order='ant2')
>>> print(np.min(np.diff(uvd.ant_1_array)) >= 0)
True

>>> # You can also sort and conjugate in a single step for the purposes of comparing two objects
>>> uvd.reorder_blts(order='bda', conj_convention='ant1<ant2')
>>> uvd2.reorder_blts(order='bda', conj_convention='ant1<ant2')
>>> print(uvd == uvd2)
True

c) Sorting along the frequency axis

The pyuvdata.UVData.reorder_freqs() method will reorder the frequency axis by sorting by spectral windows or channels (or even just the channels within specific spectral windows). Spectral windows or channels can be sorted by ascending or descending number or in an order specified by passing an array of spectral window or channel numbers.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uvd = UVData()
>>> testfile = os.path.join(DATA_PATH, "sma_test.mir")
>>> uvd.read(testfile)

>>> # Sort by spectral window number and by frequency within the spectral window
>>> # Now the spectral windows are in ascending order and the frequencies in each window
>>> # are in ascending order.
>>> uvd.reorder_freqs(spw_order="number", channel_order="freq")
>>> print(uvd.spw_array)
[-4 -3 -2 -1  1  2  3  4]

>>> print(np.min(np.diff(uvd.freq_array[0, np.nonzero(uvd.flex_spw_id_array == 1)])) >= 0)
True

>>> # Prepend a ``-`` to the sort string to sort in descending order.
>>> # Now the spectral windows are in descending order but the frequencies in each window
>>> # are in ascending order.
>>> uvd.reorder_freqs(spw_order="-number", channel_order="freq")
>>> print(uvd.spw_array)
[ 4  3  2  1 -1 -2 -3 -4]

>>> print(np.min(np.diff(uvd.freq_array[0, np.nonzero(uvd.flex_spw_id_array == 1)])) >= 0)
True

>>> # Use the ``select_spw`` keyword to sort only one spectral window.
>>> # Now the frequencies in spectral window 1 are in descending order but the frequencies
>>> # in spectral window 2 are in ascending order
>>> uvd.reorder_freqs(select_spw=1, channel_order="-freq")
>>> print(np.min(np.diff(uvd.freq_array[0, np.nonzero(uvd.flex_spw_id_array == 1)])) <= 0)
True

>>> print(np.min(np.diff(uvd.freq_array[0, np.nonzero(uvd.flex_spw_id_array == 2)])) >= 0)
True

c) Sorting along the polarization axis

The pyuvdata.UVData.reorder_pols() method will reorder the polarization axis either following the 'AIPS' or 'CASA' convention, or by an explicit index ordering set by the user.

>>> import os
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> import pyuvdata.utils as uvutils
>>> uvd = UVData()
>>> uvfits_file = os.path.join(DATA_PATH, 'day2_TDEM0003_10s_norx_1src_1spw.uvfits')
>>> uvd.read(uvfits_file)
>>> print(uvutils.polnum2str(uvd.polarization_array))
['rr', 'll', 'rl', 'lr']

>>> uvd.reorder_pols('CASA')
>>> print(uvutils.polnum2str(uvd.polarization_array))
['rr', 'rl', 'lr', 'll']

UVData: Working with Redundant Baselines

a) Finding Redundant Baselines

The method pyuvdata.UVData.get_redundancies() provides options for finding redundant groups of baselines in an array, either by antenna positions or uvw coordinates. Baselines are considered redundant if they are within a specified tolerance distance (default is 1 meter).

The default behavior is to use the uvw_array on the object (representing the baselines that have data on the object) to find redundancies among the uvw vectors. If the include_conjugates option is set, it will include baselines that are redundant when reversed in the same group. In this case, a list of conjugates is returned as well, which contains indices for the baselines that were flipped for the redundant groups.

If the use_antpos keyword is set, antenna_positions will be used to calculate redundancies instead of the uvw_array. This can result in different behavior because all possible redundant baselines will be returned, not just the ones with data on the object. In this case, the baselines are defined in the u>0 convention, so some of the baselines may be conjugated relative to the baselines with data on the object. If the conjugate_bls keyword is set, it will also update the baseline conjugation on the object so that the baselines in the returned groups correspond with the baselines listed on the object (except for antenna pairs with no associated data).

There are also utility functions to get redundant groups from either a list of baselines vectors and corresponding baseline indices (pyuvdata.utils.get_baseline_redundancies()) or antenna positions and antenna indices (pyuvdata.utils.get_antenna_redundancies()). Note that using these utility functions for the baselines on an object is less memory efficient than using pyuvdata.UVData.get_redundancies() because the latter only uses the first time in the baseline array.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> from pyuvdata import utils as uvutils
>>> uvd = UVData()

>>> # This file contains a HERA19 layout.
>>> uvd.read(os.path.join(DATA_PATH, 'fewant_randsrc_airybeam_Nsrc100_10MHz.uvfits'))
>>> uvd.unphase_to_drift(use_ant_pos=True)
>>> tol = 0.05  # Tolerance in meters

>>> # Returned values: list of redundant groups, corresponding mean baseline vectors, baseline lengths. No conjugates included, so conjugates is None.
>>> baseline_groups, vec_bin_centers, lengths = uvd.get_redundancies(tol=tol)
>>> print(len(baseline_groups))
19

>>> # The include_conjugates option includes baselines that are redundant when reversed.
>>> # If used, the conjugates list will contain a list of indices of baselines that must be flipped to be redundant.
>>> baseline_groups, vec_bin_centers, lengths, conjugates = uvd.get_redundancies(tol=tol, include_conjugates=True)
>>> print(len(baseline_groups))
19

>>> # Using antenna positions instead
>>> antpos, antnums = uvd.get_ENU_antpos()
>>> baseline_groups, vec_bin_centers, lengths = uvd.get_redundancies(tol=tol, use_antpos=True)
>>> print(len(baseline_groups))
20

>>> # get_redundancies has the option to ignore autocorrelations.
>>> baseline_groups, vec_bin_centers, lengths = uvd.get_redundancies(tol=tol, use_antpos=True, include_autos=False)
>>> print(len(baseline_groups))
19

b) Compressing/inflating on Redundant Baselines

Since redundant baselines should have similar visibilities, some level of data compression can be achieved by only keeping one out of a set of redundant baselines. The pyuvdata.UVData.compress_by_redundancy() method will find groups of baselines that are redundant to a given tolerance and either average over them or select a single baseline from the redundant group. If the data are identical between redundant baselines (e.g. if they are from a noiseless simulation) the “select” method should be used as it is much faster. If the “average” method is used, the data are combined with a weighted average using the nsample_array as weights and the final nsample_array will be a sum of the nsample_array of the combined baselines (so it can be larger than 1).

This action is (almost) inverted by the pyuvdata.UVData.inflate_by_redundancy() method, which finds all possible baselines from the antenna positions and fills in the full data array based on redundancy.

>>> import os
>>> import numpy as np
>>> from pyuvdata import UVData
>>> from pyuvdata.data import DATA_PATH
>>> uv0 = UVData()
>>> uv0.read(os.path.join(DATA_PATH, 'fewant_randsrc_airybeam_Nsrc100_10MHz.uvfits'))
>>> tol = 0.02   # In meters

>>> # Compression can be run in-place or return a separate UVData object.
>>> uv_backup = uv0.copy()
>>> uvd2 = uv0.compress_by_redundancy(method="select", tol=tol, inplace=False)
>>> uv0.compress_by_redundancy(method="select", tol=tol)
>>> uvd2 == uv0
True

>>> # Note -- Compressing and inflating changes the baseline order, reorder before comparing.
>>> uv0.inflate_by_redundancy(tol=tol)
>>> uv_backup.reorder_blts(conj_convention="u>0", uvw_tol=tol)
>>> uv0.reorder_blts()
>>> np.all(uv0.baseline_array == uv_backup.baseline_array)
True

>>> uvd2.inflate_by_redundancy(tol=tol)
>>> uvd2 == uv0
True