Source code for pyuvdata.uvcal.calfits

# -*- mode: python; coding: utf-8 -*-
# Copyright (c) 2018 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License
"""Class for reading and writing calibration FITS files."""
import os
import warnings

import numpy as np
from astropy.io import fits

from .uvcal import UVCal
from .. import utils as uvutils

__all__ = ["CALFITS"]


[docs]class CALFITS(UVCal): """ Defines a calfits-specific class for reading and writing calfits files. This class should not be interacted with directly, instead use the read_calfits and write_calfits methods on the UVCal class. """
[docs] def write_calfits( self, filename, run_check=True, check_extra=True, run_check_acceptability=True, clobber=False, ): """ Write the data to a calfits file. Parameters ---------- filename : str The calfits file to write to. run_check : bool Option to check for the existence and proper shapes of parameters before writing the file. check_extra : bool Option to check optional parameters as well as required ones. run_check_acceptability : bool Option to check acceptable range of the values of parameters before writing the file. clobber : bool Option to overwrite the filename if the file already exists. """ if self.Nspws > 1: raise ValueError( "The calfits format does not support multiple spectral windows" ) if run_check: self.check( check_extra=check_extra, run_check_acceptability=run_check_acceptability, ) # calfits allows for frequency spacing to not equal channel widths as long as # the frequencies are evenly spaced, so only raise spacing error spacing_error, chanwidth_error = self._check_freq_spacing(raise_errors=False) if spacing_error: raise ValueError( "Frequencies are not evenly spaced or have differing " "values of channel widths. The calfits format does not support " "unevenly spaced frequencies or varying channel widths." ) # we've already run the check_freq_spacing, so spacings and channel widths are # the same to our tolerances if self.future_array_shapes: if self.freq_array is not None: ref_freq = self.freq_array[0] else: ref_freq = self.freq_range[0, 0] else: ref_freq = self.freq_array[0, 0] if self.Nfreqs > 1: if chanwidth_error: # this means that the frequencies are evenly spaced but do not # match our channel widths. Use some rounding to get a good delta. if self.future_array_shapes: freq_arr_use = self.freq_array else: freq_arr_use = self.freq_array[0, :] rounded_spacing = np.around( np.diff(freq_arr_use), int(np.ceil(np.log10(self._freq_array.tols[1]) * -1)), ) delta_freq_array = rounded_spacing[0] else: if self.future_array_shapes or self.flex_spw: delta_freq_array = np.median(self.channel_width) else: delta_freq_array = self.channel_width else: if self.future_array_shapes or self.flex_spw: if self.channel_width is not None: delta_freq_array = self.channel_width[0] else: # default to 1 Hz for wide-band cals with Nfreqs=1 and no channel # width info delta_freq_array = 1.0 else: delta_freq_array = self.channel_width if self.Ntimes > 1: if not uvutils._test_array_constant_spacing(self._time_array): raise ValueError( "The times are not evenly spaced (probably " "because of a select operation). The calfits format " "does not support unevenly spaced times." ) time_spacing = np.diff(self.time_array) if self.future_array_shapes: if not uvutils._test_array_constant(self._integration_time): raise ValueError( "The integration times are variable. The calfits format " "does not support variable integration times." ) median_int_time = np.median(self.integration_time) if np.isclose(time_spacing[0], median_int_time / (24.0 * 60.0**2)): time_spacing = median_int_time / (24.0 * 60.0**2) else: rounded_spacing = np.around( time_spacing, int( np.ceil( np.log10(self._time_array.tols[1] / self.Ntimes) * -1 ) + 1 ), ) time_spacing = rounded_spacing[0] else: if np.isclose( time_spacing[0], self.integration_time / (24.0 * 60.0**2) ): time_spacing = self.integration_time / (24.0 * 60.0**2) else: rounded_spacing = np.around( time_spacing, int( np.ceil( np.log10(self._time_array.tols[1] / self.Ntimes) * -1 ) + 1 ), ) time_spacing = rounded_spacing[0] else: if self.future_array_shapes: time_spacing = self.integration_time[0] / (24.0 * 60.0**2) else: time_spacing = self.integration_time / (24.0 * 60.0**2) if self.Njones > 1: if not uvutils._test_array_constant_spacing(self._jones_array): raise ValueError( "The jones values are not evenly spaced." "The calibration fits file format does not" " support unevenly spaced polarizations." ) jones_spacing = self.jones_array[1] - self.jones_array[0] else: jones_spacing = -1 prihdr = fits.Header() if self.total_quality_array is not None: totqualhdr = fits.Header() totqualhdr["EXTNAME"] = "TOTQLTY" if self.cal_type != "gain": sechdr = fits.Header() sechdr["EXTNAME"] = "FLAGS" # Conforming to fits format prihdr["SIMPLE"] = True prihdr["TELESCOP"] = self.telescope_name if self.telescope_location is not None: prihdr["ARRAYX"] = self.telescope_location[0] prihdr["ARRAYY"] = self.telescope_location[1] prihdr["ARRAYZ"] = self.telescope_location[2] prihdr["LAT"] = self.telescope_location_lat_lon_alt_degrees[0] prihdr["LON"] = self.telescope_location_lat_lon_alt_degrees[1] prihdr["ALT"] = self.telescope_location_lat_lon_alt[2] prihdr["GNCONVEN"] = self.gain_convention prihdr["CALTYPE"] = self.cal_type prihdr["CALSTYLE"] = self.cal_style if self.sky_field is not None: prihdr["FIELD"] = self.sky_field if self.sky_catalog is not None: prihdr["CATALOG"] = self.sky_catalog if self.ref_antenna_name is not None: prihdr["REFANT"] = self.ref_antenna_name if self.Nsources is not None: prihdr["NSOURCES"] = self.Nsources if self.baseline_range is not None: prihdr["BL_RANGE"] = ( "[" + ", ".join([str(b) for b in self.baseline_range]) + "]" ) if self.diffuse_model is not None: prihdr["DIFFUSE"] = self.diffuse_model if self.gain_scale is not None: prihdr["GNSCALE"] = self.gain_scale if self.future_array_shapes: if self.Ntimes > 1: prihdr["INTTIME"] = median_int_time else: prihdr["INTTIME"] = self.integration_time[0] else: prihdr["INTTIME"] = self.integration_time if self.future_array_shapes or self.flex_spw: if self.Nfreqs > 1: prihdr["CHWIDTH"] = np.median(self.channel_width) else: prihdr["CHWIDTH"] = delta_freq_array else: prihdr["CHWIDTH"] = self.channel_width prihdr["XORIENT"] = self.x_orientation if self.future_array_shapes and self.freq_range is not None: freq_range_use = self.freq_range[0, :] else: freq_range_use = self.freq_range if self.cal_type == "delay": prihdr["FRQRANGE"] = ",".join(map(str, freq_range_use)) elif self.freq_range is not None: prihdr["FRQRANGE"] = ",".join(map(str, freq_range_use)) if self.time_range is not None: prihdr["TMERANGE"] = ",".join(map(str, self.time_range)) if self.observer: prihdr["OBSERVER"] = self.observer if self.git_origin_cal: prihdr["ORIGCAL"] = self.git_origin_cal if self.git_hash_cal: prihdr["HASHCAL"] = self.git_hash_cal if self.cal_type == "unknown": raise ValueError( "unknown calibration type. Do not know how to " "store parameters" ) # Define primary header values # Arrays have (column-major) dimensions of # [Nimages, Njones, Ntimes, Nfreqs, 1, Nantennas] # For a "delay"-type calibration, Nfreqs is a shallow axis # set the axis for number of arrays prihdr["CTYPE1"] = ("Narrays", "Number of image arrays.") prihdr["CUNIT1"] = "Integer" prihdr["CDELT1"] = 1 prihdr["CRPIX1"] = 1 prihdr["CRVAL1"] = 1 # Jones axis prihdr["CTYPE2"] = ("JONES", "Jones matrix array") prihdr["CUNIT2"] = ("Integer", "representative integer for polarization.") prihdr["CRPIX2"] = 1 prihdr["CRVAL2"] = self.jones_array[0] # always start with first jones. prihdr["CDELT2"] = jones_spacing # time axis prihdr["CTYPE3"] = ("TIME", "Time axis.") prihdr["CUNIT3"] = ("JD", "Time in julian date format") prihdr["CRPIX3"] = 1 prihdr["CRVAL3"] = self.time_array[0] prihdr["CDELT3"] = time_spacing # freq axis prihdr["CTYPE4"] = ("FREQS", "Frequency.") prihdr["CUNIT4"] = "Hz" prihdr["CRPIX4"] = 1 prihdr["CRVAL4"] = ref_freq prihdr["CDELT4"] = delta_freq_array # spw axis: number of spectral windows prihdr["CTYPE5"] = ("IF", "Spectral window number.") prihdr["CUNIT5"] = "Integer" prihdr["CRPIX5"] = 1 prihdr["CRVAL5"] = 1 prihdr["CDELT5"] = 1 # antenna axis prihdr["CTYPE6"] = ("ANTAXIS", "See ANTARR in ANTENNA extension for values.") prihdr["CUNIT6"] = "Integer" prihdr["CRPIX6"] = 1 prihdr["CRVAL6"] = 1 prihdr["CDELT6"] = -1 # end standard keywords; begin user-defined keywords for key, value in self.extra_keywords.items(): # header keywords have to be 8 characters or less if len(str(key)) > 8: warnings.warn( "key {key} in extra_keywords is longer than 8 " "characters. It will be truncated to 8 as required " "by the calfits file format.".format(key=key) ) keyword = key[:8].upper() if isinstance(value, (dict, list, np.ndarray)): raise TypeError( "Extra keyword {keyword} is of {keytype}. " "Only strings and numbers are " "supported in calfits.".format(keyword=key, keytype=type(value)) ) if keyword == "COMMENT": for line in value.splitlines(): prihdr.add_comment(line) else: prihdr[keyword] = value for line in self.history.splitlines(): prihdr.add_history(line) # define data section based on calibration type if self.cal_type == "gain": calfits_data_shape = ( self.Nants_data, 1, self.Nfreqs, self.Ntimes, self.Njones, 1, ) if self.input_flag_array is not None: pridata = np.concatenate( [ np.reshape(self.gain_array.real, calfits_data_shape), np.reshape(self.gain_array.imag, calfits_data_shape), np.reshape(self.flag_array, calfits_data_shape), np.reshape(self.input_flag_array, calfits_data_shape), np.reshape(self.quality_array, calfits_data_shape), ], axis=-1, ) else: pridata = np.concatenate( [ np.reshape(self.gain_array.real, calfits_data_shape), np.reshape(self.gain_array.imag, calfits_data_shape), np.reshape(self.flag_array, calfits_data_shape), np.reshape(self.quality_array, calfits_data_shape), ], axis=-1, ) elif self.cal_type == "delay": calfits_data_shape = (self.Nants_data, 1, 1, self.Ntimes, self.Njones, 1) pridata = np.concatenate( [ np.reshape(self.delay_array, calfits_data_shape), np.reshape(self.quality_array, calfits_data_shape), ], axis=-1, ) # Set headers for the second hdu containing the flags. Only in # cal_type=delay # Can't put in primary header because frequency axis is shallow there, # but not here # Header values are the same as the primary header sechdr["CTYPE1"] = ("Narrays", "Number of image arrays.") sechdr["CUNIT1"] = "Integer" sechdr["CRPIX1"] = 1 sechdr["CRVAL1"] = 1 sechdr["CDELT1"] = 1 sechdr["CTYPE2"] = ("JONES", "Jones matrix array") sechdr["CUNIT2"] = ("Integer", "representative integer for polarization.") sechdr["CRPIX2"] = 1 sechdr["CRVAL2"] = self.jones_array[0] # always start with first jones. sechdr["CDELT2"] = jones_spacing sechdr["CTYPE3"] = ("TIME", "Time axis.") sechdr["CUNIT3"] = ("JD", "Time in julian date format") sechdr["CRPIX3"] = 1 sechdr["CRVAL3"] = self.time_array[0] sechdr["CDELT3"] = time_spacing sechdr["CTYPE4"] = ("FREQS", "Valid frequencies to apply delay.") sechdr["CUNIT4"] = "Hz" sechdr["CRPIX4"] = 1 sechdr["CRVAL4"] = ref_freq sechdr["CDELT4"] = delta_freq_array sechdr["CTYPE5"] = ("IF", "Spectral window number.") sechdr["CUNIT5"] = "Integer" sechdr["CRPIX5"] = 1 sechdr["CRVAL5"] = 1 sechdr["CDELT5"] = 1 sechdr["CTYPE6"] = ( "ANTAXIS", "See ANTARR in ANTENNA extension for values.", ) # convert from bool to int64; undone on read calfits_data_shape = ( self.Nants_data, 1, self.Nfreqs, self.Ntimes, self.Njones, 1, ) if self.future_array_shapes: # need to broadcast the flags back to the expected shape flag_array_use = np.repeat(self.flag_array, self.Nfreqs, axis=2) if self.input_flag_array is not None: input_flag_array_use = np.repeat( self.input_flag_array, self.Nfreqs, axis=2 ) else: flag_array_use = self.flag_array input_flag_array_use = self.input_flag_array if self.input_flag_array is not None: secdata = np.concatenate( [ np.reshape(flag_array_use.astype(np.int64), calfits_data_shape), np.reshape( input_flag_array_use.astype(np.int64), calfits_data_shape ), ], axis=-1, ) else: secdata = np.reshape( flag_array_use.astype(np.int64), calfits_data_shape ) if self.total_quality_array is not None: # Set headers for the hdu containing the total_quality_array # No antenna axis, so we have [Njones, Ntime, Nfreq, 1] totqualhdr["CTYPE1"] = ("JONES", "Jones matrix array") totqualhdr["CUNIT1"] = ( "Integer", "representative integer for polarization.", ) totqualhdr["CRPIX1"] = 1 totqualhdr["CRVAL1"] = self.jones_array[0] # always start with first jones. totqualhdr["CDELT1"] = jones_spacing totqualhdr["CTYPE2"] = ("TIME", "Time axis.") totqualhdr["CUNIT2"] = ("JD", "Time in julian date format") totqualhdr["CRPIX2"] = 1 totqualhdr["CRVAL2"] = self.time_array[0] totqualhdr["CDELT2"] = time_spacing totqualhdr["CTYPE3"] = ("FREQS", "Valid frequencies to apply delay.") totqualhdr["CUNIT3"] = "Hz" totqualhdr["CRPIX3"] = 1 totqualhdr["CRVAL3"] = ref_freq totqualhdr["CDELT3"] = delta_freq_array # spws axis: number of spectral windows totqualhdr["CTYPE4"] = ("IF", "Spectral window number.") totqualhdr["CUNIT4"] = "Integer" totqualhdr["CRPIX4"] = 1 totqualhdr["CRVAL4"] = 1 totqualhdr["CDELT4"] = 1 if self.cal_type == "gain": calfits_tqa_shape = (1, self.Nfreqs, self.Ntimes, self.Njones) else: calfits_tqa_shape = (1, 1, self.Ntimes, self.Njones) totqualdata = np.reshape(self.total_quality_array, calfits_tqa_shape) # make HDUs prihdu = fits.PrimaryHDU(data=pridata, header=prihdr) # ant HDU col1 = fits.Column(name="ANTNAME", format="8A", array=self.antenna_names) col2 = fits.Column(name="ANTINDEX", format="D", array=self.antenna_numbers) if self.Nants_data == self.Nants_telescope: col3 = fits.Column(name="ANTARR", format="D", array=self.ant_array) else: # ant_array is shorter than the other columns. # Pad the extra rows with -1s. Need to undo on read. nants_add = self.Nants_telescope - self.Nants_data ant_array_use = np.append( self.ant_array, np.zeros(nants_add, dtype=np.int64) - 1 ) col3 = fits.Column(name="ANTARR", format="D", array=ant_array_use) if self.antenna_positions is not None: col4 = fits.Column(name="ANTXYZ", format="3D", array=self.antenna_positions) cols = fits.ColDefs([col1, col2, col3, col4]) else: cols = fits.ColDefs([col1, col2, col3]) ant_hdu = fits.BinTableHDU.from_columns(cols) ant_hdu.header["EXTNAME"] = "ANTENNAS" hdulist = fits.HDUList([prihdu, ant_hdu]) if self.cal_type != "gain": sechdu = fits.ImageHDU(data=secdata, header=sechdr) hdulist.append(sechdu) if self.total_quality_array is not None: totqualhdu = fits.ImageHDU(data=totqualdata, header=totqualhdr) hdulist.append(totqualhdu) hdulist.writeto(filename, overwrite=clobber) hdulist.close()
[docs] def read_calfits( self, filename, read_data=True, background_lsts=True, run_check=True, check_extra=True, run_check_acceptability=True, ): """ Read data from a calfits file. Parameters ---------- filename : str The calfits file to read from. read_data : bool Read in the gains or delays, quality arrays and flag arrays. If set to False, only the metadata will be read in. Setting read_data to False results in a metadata only object. background_lsts : bool When set to True, the lst_array is calculated in a background thread. run_check : bool Option to check for the existence and proper shapes of parameters after reading in the file. check_extra : bool Option to check optional parameters as well as required ones. run_check_acceptability : bool Option to check acceptable range of the values of parameters after reading in the file. """ # update filename attribute basename = os.path.basename(filename) self.filename = [basename] self._filename.form = (1,) with fits.open(filename) as fname: hdr = fname[0].header.copy() hdunames = uvutils._fits_indexhdus(fname) anthdu = fname[hdunames["ANTENNAS"]] self.Nants_telescope = anthdu.header["NAXIS2"] antdata = anthdu.data self.antenna_names = np.array(list(map(str, antdata["ANTNAME"]))) self.antenna_numbers = np.array(list(map(int, antdata["ANTINDEX"]))) self.ant_array = np.array(list(map(int, antdata["ANTARR"]))) if np.min(self.ant_array) < 0: # ant_array was shorter than the other columns, so it was # padded with -1s. # Remove the padded entries. self.ant_array = self.ant_array[np.where(self.ant_array >= 0)[0]] if anthdu.header["TFIELDS"] > 3: self.antenna_positions = antdata["ANTXYZ"] self.channel_width = hdr.pop("CHWIDTH") self.integration_time = hdr.pop("INTTIME") self.telescope_name = hdr.pop("TELESCOP") x_telescope = hdr.pop("ARRAYX", None) y_telescope = hdr.pop("ARRAYY", None) z_telescope = hdr.pop("ARRAYZ", None) lat = hdr.pop("LAT", None) lon = hdr.pop("LON", None) alt = hdr.pop("ALT", None) if ( x_telescope is not None and y_telescope is not None and z_telescope is not None ): self.telescope_location = np.array( [x_telescope, y_telescope, z_telescope] ) elif lat is not None and lon is not None and alt is not None: self.telescope_location_lat_lon_alt_degrees = (lat, lon, alt) if self.telescope_location is None or self.antenna_positions is None: try: self.set_telescope_params() except ValueError as ve: warnings.warn(str(ve)) self.history = str(hdr.get("HISTORY", "")) if not uvutils._check_history_version( self.history, self.pyuvdata_version_str ): if not self.history.endswith("\n"): self.history += "\n" self.history += self.pyuvdata_version_str time_range = hdr.pop("TMERANGE", None) if time_range is not None: self.time_range = list(map(float, time_range.split(","))) self.gain_convention = hdr.pop("GNCONVEN") self.gain_scale = hdr.pop("GNSCALE", None) self.x_orientation = hdr.pop("XORIENT") self.cal_type = hdr.pop("CALTYPE") if self.cal_type == "delay": self.freq_range = list(map(float, hdr.pop("FRQRANGE").split(","))) else: if "FRQRANGE" in hdr: self.freq_range = list(map(float, hdr.pop("FRQRANGE").split(","))) self.cal_style = hdr.pop("CALSTYLE") if self.cal_style == "sky": self._set_sky() elif self.cal_style == "redundant": self._set_redundant() self.sky_field = hdr.pop("FIELD", None) self.sky_catalog = hdr.pop("CATALOG", None) self.ref_antenna_name = hdr.pop("REFANT", None) self.Nsources = hdr.pop("NSOURCES", None) bl_range_string = hdr.pop("BL_RANGE", None) if bl_range_string is not None: self.baseline_range = [ float(b) for b in bl_range_string.strip("[").strip("]").split(",") ] self.diffuse_model = hdr.pop("DIFFUSE", None) self.observer = hdr.pop("OBSERVER", None) self.git_origin_cal = hdr.pop("ORIGCAL", None) self.git_hash_cal = hdr.pop("HASHCAL", None) # generate polarization and time array for either cal_type. self.Njones = hdr.pop("NAXIS2") self.jones_array = uvutils._fits_gethduaxis(fname[0], 2) self.Ntimes = hdr.pop("NAXIS3") self.time_array = uvutils._fits_gethduaxis(fname[0], 3) if self.telescope_location is not None: proc = self.set_lsts_from_time_array(background=background_lsts) else: proc = None self.Nspws = hdr.pop("NAXIS5") assert self.Nspws == 1, ( "This file appears to have multiple spectral windows, which is not " "supported by the calfits format." ) # subtract 1 to be zero-indexed self.spw_array = uvutils._fits_gethduaxis(fname[0], 5) - 1 self.Nants_data = hdr.pop("NAXIS6") if self.cal_type == "gain": self._set_gain() self.Nfreqs = hdr.pop("NAXIS4") self.freq_array = uvutils._fits_gethduaxis(fname[0], 4) self.freq_array.shape = (1,) + self.freq_array.shape if self.cal_type == "delay": self._set_delay() sechdu = fname[hdunames["FLAGS"]] # generate frequency array from flag data unit # (no freq axis in primary). self.Nfreqs = sechdu.header["NAXIS4"] assert self.Nspws == 1, ( "This file appears to have multiple spectral windows, which is not " "supported by the calfits format." ) self.freq_array = uvutils._fits_gethduaxis(sechdu, 4) self.freq_array.shape = (1,) + self.freq_array.shape spw_array = uvutils._fits_gethduaxis(sechdu, 5) - 1 if not np.allclose(spw_array, self.spw_array): raise ValueError( "Spectral window values are different in FLAGS HDU than" " in primary HDU" ) time_array = uvutils._fits_gethduaxis(sechdu, 3) if not np.allclose( time_array, self.time_array, rtol=self._time_array.tols[0], atol=self._time_array.tols[0], ): raise ValueError( "Time values are different in FLAGS HDU than in primary HDU" ) jones_array = uvutils._fits_gethduaxis(sechdu, 2) if not np.allclose( jones_array, self.jones_array, rtol=self._jones_array.tols[0], atol=self._jones_array.tols[0], ): raise ValueError( "Jones values are different in FLAGS HDU than in primary HDU" ) # get data. if read_data: data = fname[0].data if self.cal_type == "gain": self.gain_array = ( data[:, :, :, :, :, 0] + 1j * data[:, :, :, :, :, 1] ) self.flag_array = data[:, :, :, :, :, 2].astype("bool") if hdr.pop("NAXIS1") == 5: self.input_flag_array = data[:, :, :, :, :, 3].astype("bool") self.quality_array = data[:, :, :, :, :, 4] else: self.quality_array = data[:, :, :, :, :, 3] if self.cal_type == "delay": self.delay_array = data[:, :, :, :, :, 0] self.quality_array = data[:, :, :, :, :, 1] flag_data = sechdu.data if sechdu.header["NAXIS1"] == 2: self.flag_array = flag_data[:, :, :, :, :, 0].astype("bool") self.input_flag_array = flag_data[:, :, :, :, :, 1].astype( "bool" ) else: self.flag_array = flag_data[:, :, :, :, :, 0].astype("bool") # get total quality array if present if "TOTQLTY" in hdunames: totqualhdu = fname[hdunames["TOTQLTY"]] self.total_quality_array = totqualhdu.data spw_array = uvutils._fits_gethduaxis(totqualhdu, 4) - 1 if not np.allclose(spw_array, self.spw_array): raise ValueError( "Spectral window values are different in " "TOTQLTY HDU than in primary HDU. primary HDU " "has {pspw}, TOTQLTY has {tspw}".format( pspw=self.spw_array, tspw=spw_array ) ) if self.cal_type != "delay": # delay-type files won't have a freq_array freq_array = uvutils._fits_gethduaxis(totqualhdu, 3) freq_array.shape = (1,) + freq_array.shape if not np.allclose( freq_array, self.freq_array, rtol=self._freq_array.tols[0], atol=self._freq_array.tols[0], ): raise ValueError( "Frequency values are different in TOTQLTY HDU than" " in primary HDU" ) time_array = uvutils._fits_gethduaxis(totqualhdu, 2) if not np.allclose( time_array, self.time_array, rtol=self._time_array.tols[0], atol=self._time_array.tols[0], ): raise ValueError( "Time values are different in TOTQLTY HDU than in " "primary HDU" ) jones_array = uvutils._fits_gethduaxis(totqualhdu, 1) if not np.allclose( jones_array, self.jones_array, rtol=self._jones_array.tols[0], atol=self._jones_array.tols[0], ): raise ValueError( "Jones values are different in TOTQLTY HDU than in " "primary HDU" ) else: self.total_quality_array = None self.extra_keywords = uvutils._get_fits_extra_keywords(hdr) # wait for LSTs if set in background if proc is not None: proc.join() if run_check: self.check( check_extra=check_extra, run_check_acceptability=run_check_acceptability )